If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-20X+20=0
a = 1; b = -20; c = +20;
Δ = b2-4ac
Δ = -202-4·1·20
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-8\sqrt{5}}{2*1}=\frac{20-8\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+8\sqrt{5}}{2*1}=\frac{20+8\sqrt{5}}{2} $
| n+2/5-10n=10-5n | | 3t–6=t–2. | | -1.5+s=5.25 | | (8×8)+(6×6)=x | | 2*x-5=10 | | 14-b-14=18-14 | | 10+4q=11=3q | | 4^x-2^x+1=15 | | 20+x*2=30 | | 6x+2-5=0 | | 7d–1=48 | | 74y-8-78y=-4y-874y−8−78y=−4y−8 | | 28=a+19 | | 5r^2-44r+150=0 | | 1+2x+2x2=0 | | 6.6x2=8.6 | | 5x-3x+2x=27 | | 5(a+4)=3(a+6 | | 1=p4 | | −9=27+3y | | 3(4x-1)=8x+9 | | w-1.95=5.2 | | 3(6x+5=4(4x+5) | | 5.4=-2.5+x | | 8x-7+15=19x | | u-6.11=5.2 | | 2x-61=x-3 | | 7+s4=10 | | -7x^2+3x+19=0 | | 289=143-v | | 3x+7=x+18 | | 3p-1p=5(p-1)-2(7-2p) |